4 N\
Search through plan space

* Planning as a search through plan space
— nodes represent partially specified plans
— edges denote plan-refinement operations
» Facilitates thinking about alternative
— representations of partially specified plans
— plan-refinement operators
« Partial order plan representations
— aplan isrepresented as a partially ordered sequence
— planning algorithm practices least commitment

o /

Nayak CS 329A, Handout #12

/

Partial order plans

« A planisathreetuple<A, O, L>

— Alisthe set of actionsin the plan

e initially we consider only ground actions
— Olisthe set of ordering constraints among the actions
* O must be consistent
— L isthe set of causal links

Ay

Sart

DN

A, = End

-
N

3

/

Nayak

CS 329A, Handout #12

4 N
Causal links

» Records dependencies between actions
e A causal link consists of
— the producer A, Q
— the consumer A, p = A
— the proposition Q
« A causal link states that
— action A has an effect Q
— action A, has a precondition Q
— Qwill be made true for A, by A,

o /

Nayak CS 329A, Handout #12

-

Threats

 Anaction A isathreat to acausal link AerAc Inaplan
<A O, L>if

- OE {A,< A< A} isconsistent
— A has-Q as an effect

/

Nayak CS 329A, Handout #12

-

Resolving athreat

e Threats are resolved by adding additional ordering constraints

* Promotion

— add the constraint A, < A,
e Demotion

— add the constraint A, < A,

/

Nayak

CS 329A, Handout #12

-

Representing null plans

Introduce two pseudo-actions
o Jart: effectsaretheinitial state and preconditions are empty
* End: preconditions are the goals and effects are empty

e Ordering constraint: Sart < End

onCA

clear B

Sart
clear C on ATable onB Table

onAB onBC
End

/

Nayak

CS 329A, Handout #12

-

o

Partial order planning

algorithm POP(<A, O, L>, Agenda)
If Agendaisempty then return <A, O, L>
Remove some<Q, A~ from Agenda
A 44 = choose an action that can be ordered before A4
and has effect Q (an existing or newly instantiated action)
If nosuch A4 existsthen return “no plan”
AddA A toLandA <A 100
If A4y 1S NEwW then
A= AE {A,4}, add preconds(A,,,) to Agenda and Sart < A_,, < Endto O
for every causal link A, R, A, threatened by some A, do
choose either to demote A, or to promote A, consistently
If neither ordering is consistent then return “no plan”
endfor
POP(<A, O, L>, Agenda)

end POP
/

Nayak CS 329A, Handout #12

4 N
Example
Sart
oNnCA clearB clearC on ATable onBTable
onAB onBC
End
\ /

Nayak

CS 329A, Handout #12

-
A complete plan

e Figure 10 from Weld 1994

/

Nayak

CS 329A, Handout #12

4 N
Lifting

o Useleast-commitment in operator instantiation
* An effect can support a precondition if the two unify

— add co-designation constraints resulting from the most
general unifier of the effect and precondition

— Instantiate an operator by creating a copy with afresh set of
variables

» Operator preconditions can be non-codesignation constraints
* Threats need be resolved only when they are forced

— means that a plan is complete only when all variables are
Instantiated

— ensure by requiring that variables in preconditions and
_ effects are the same and initial state has no variables .

Nayak CS 329A, Handout #12

/

_end LPOP

Lifted POP

algorithm LPOP(<A, O, L,' , Agenda)

If Agendaisempty then return <A, O, L>
Remove some<Q, A~ from Agenda
4¢ = choose an action that can be ordered before A 44
and has an effect that consistently unifies with| Q (existing or new action)
If nosuch A4y existsthen return “no plan”
Add AL — Aneeg T0 L, Algg < Aneeq 10 Ol and codesignation constral ntsfrom|
unification to B
If A qq 1SNew then
A=AE {A) and Sart < A< Endto O
Add noncodesignation preconds of A 4, to B |and logical onesto Agenda
endif
for every causal link A, R A, threatened by some A, do
choose either to demote A, or to promote A, consistently
If neither ordering is consistent then return “no plan”
endfor
LPOP(<A, O, L, B

\/

-, Agenda)

/

Nayak CS 329A, Handout #12

-

UCPOP

e Augmentsthe basic STRIPS operator representation with
— conditional effects
— digunctive preconditions
— universal quantification

/

Nayak CS 329A, Handout #12

